
UDC 538.4 

CONTNIAL EQUATIONS OF ELECTWlYYNAMICS CX’ CONDUCTING SUSPPNGICWS 
MOVING IN A MAGNETIC FIELD 

PMM VoL41, Nz 1, 19’77, pp.41-52 

I. M. RUTKEVICH 

(Moscow) 
(Received August 20, 1975) 

A continual model of the electrodynamics of a weakly concentrated suspension 
moving in a magnetic field is formulated. Averaged equations are derived with 

allowance for the presence of local parameter discontinuities at particle sucfa- 

ces, The analysis of the current distribution in the neighborhood of a single par- 

ticle is used for averaging Ohm’s law. Expressions are established for maccosco- 
pit densities of electric power andJoule dissipation. properties of continual 

equations for high and low Reynolds numbers are considered. 

The problem of constructing continual electrodynamic models arises in connection 
with the formulation of equations of mechanics of suspensions considered as media with 
internal degrees of freedom [l] or having a micro-structure [Z] . In such construction the 

passage to equations of the field averaged over physically small volumes with a large 

number of dispersed particles is presupposed. 
A closed macrocontinual description becomes possible if the averaged material equa- 

tions, in particular Ohm’s law,are represented in the form of relationships between quan- 

tities that appear directly in the averaged laws of conservation. In stationary isotropic 
media the averaged Ohm’s law is of the form (I> = u, (E), where u,. is the effective 

conductance, which for diluted suspension of spherical particles was determined by Max- 

well [S]. Works on the modelling of effective conductance in the case of finite concent- 
cation and various structures of inclusions ace available (see, e. g., [4, 51). 

In the case of magnetohydrodynamic interactions the averaged Ohm’s law must be for- 

mulated with aIlowance for perturbations introduced by the motion of dispersed particles 
in the velocity field and, consequently, in the electric current density. Hence it is not 
possible to pass from the local Ohm’s law to the macroscopic by a formal replacement 
of electrical conductivity by its effective value and the remaining quantities by their 

mean values. The relative motion of phases results in the appearance of “slip current’* 
which may be considered as an internal degree of freedom. 

1. The rverrgfng of Maxwell equrtionr. Let us consider a suspension 
of macro-particles with conductivity us in a fluid or plasma with conductivity of. Sub- 
scripts S and f relate to particles and fluid,cespectively. The order of the minimum 

macro-volume in which the approximation of a continuous medium is valid is 1s. The 
quantity 2, the characteristic dimension of particles a , and the characteristic length L 
of averaged parameter variation satisfy the inequality a < l< L. 

The system is assumed to be nonpolacizable, nonferromagnetic, and quasi-neutraLhence 
the usual magnetohydrodynamic equations are applicable to both phases [S] . We assume 
that the condition 

min (crs, or> = o. > eoa (1. I) 
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is satisfied. In it w is the characteristic frequency variation of local parameters and e,, 

is an electrical constant. (SI units are used throughout). In the absence of unstable ex- 
ternal effects w - V, f d, where VI is the characteristic velocity of particles and d 
the mean distance between these. Inequality (1.1) makes it possible to neglect the slip 
current and assume the electric field to be quasi-stationary. The Maxwell equations for 
microfields may now be written as 

rot E = --dB / dt, rot B = poj (La> 

div B = 0, div E = pe I E,, 

The term “microfield” is meant here to define the field of elementary charge carriers 

averaged on a scale #at is considerably smaller than the dimension of dispersed particles, 

i. e. a field which in classical electrodynamics is considered as macroscopic. The result 
of averaging the microfield over volume Dl is a macrofield. 

Since at the surface of particles electrical condl~ctivi~ is d~continuous, the macrofield 

is also discontinuous. At these surfaces the conditions 

n(B)=& nx(B}=p& n(E)=6/so (1.3) 
nx{E}= -p0(nV)nxi+nxV,(qnj) 

n{V)=O, n{j}= -V,.i 

must be satisfied [S, ‘71. In these formulas n is the external normal to the surfaces, i 
and 6 are the densities of electric surface currents and charges, respectively, q isthe con- 
tact resistance, and V r is the Hamilton surface operator. In the right-hand side of the 

fourth of Eqs. (1.3) only one term is noneero, since the conditions of formation of current 
and electric double layers are usually incompatible. 

below we introduce the conventional operatiQn of averaging over a physically small 

macrovolume D, 
(1.4) 

where X is the radius vector of the center of mass of volume D1. Vector X + x’ pas- 
ses through all points of D i, hence integration is carried out with respect to the variable 

x’. Since function (g) is continuous at discontinuity surfaces of g ,(I, 4) is a smooth- 

ing operator. The space intervals 1 dX 1 and 1 dx 1, in which it is possible to consider 

the respective variations of functions (g) and g aasmall, satisfy the condition IdX [ > a -2 
1 dx \. Because of this X may be taken as a macrocontinual radius vector. The invari- 
ant differential operators that are applied below to macroscopic functions presuppose dif- 
ferentiation with respect to Xr. 

Permutability of differentiation and averaging operations applies to continuous fields. 
This property is used in the derivation of Maxwell equations from the equations of mac- 
roscopic ele~~odyna~cs [S] , In a suspension the fields may become d~co~~~s at 

phase interface boundaries, and this must be taken into consideration when averaging 
Eqs, (1.2). For function g vyhich has discontinuities at the moving surfaces 8 k that lie 

inside D,, we can establish the following relationships : 

-%$=<-$>--&~~ V,(g}d&, Vn=nV,=nVf 65) 

k 
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%f$=<~)+~&~ ni{g)aSkv {g)=gf-gs ti 
where in this case Sk are surfaces of particles, ni is the projection of n on the basis 

vector ei and V, is the normal velocity of the discontinuity propagation, Using (1.3)- 

(1.5), after averaging Eqs. (1.2), we obtain 

(1.6) 

div (R) = 0, 

The surface integrals in (1.6) determine the contribution of micro-discontinuities to the 

generation of vortices and sources of the macroscopic field, The form of Eqs. (1.6) is 
independent of the volume concentration and shape of moving inclusions. Effect of con- 

tact resistance and the case of infinite electrical conductivity which require a special 

analysis are not considered here. Setting in (1.6) q = 0 and i = 0, we obtain the 

system 
rot (E) = 4 (B) / at, rot (B) = p. (j), div (B) = 0 (1.7) 

The last of Eqs. (1.6) is used for the determination of density of sources of the macro- 
scopic field <E) , after the independent determination of the latter. 

III what follows we consider a monodisperse suspension of undeformable spherical par- 

ticles of radius a at low volume concentration 

c = 4/,rca3n < 1 (1.8) 

where c and n are, respectively, the volume and numerical concentrations of particles. 

The microscopic current density is defined by the Ohm’s law in its isotropic form 

j=a(E+Vi<B) (1.9) 

If the result of averaging the right-hand side of (1.9) reduces to a known function of(E) 

and (B) of mean velocities and conductivities of phases, it is possible to eliminate <j) 
and <E> from system (1. ‘7) and obtain the equation of induction which relates vector 

<B) to hydrodynamic characteristics, Lore& volume forces are represented in theave- 

raged equations of phase motion, and the equations of energy contain terms whichdefine 
energy exchanges between each phase and the electromagnetic field. To determine the 
electric current contribution to the entropy generation of phases, it is necessary to know 

the average phase density of Joule dissipation. There arises the problem of representing 
these quantities in terms of <j>, <E> and (B) and of hydrodynamic properties. In 

the case of a weakly concentrated suspension the sought relationships are obtained by 
analyzing the problem of the electric field perturbed by particle motion in a boundless 
field. 

The proposed course makes it possible to obtain equations for calculating averaged 
currents and fields using the specified mean velocities of components and particle con- 
centration. Derivation of the complete system of magnetohydrodynamic equations is 
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outside the scope of this article. It presupposes the determination of relations between 
the macrcstress tensor and other dynamic characteristics of phases, and electromagnetic 
quantities. The force of interaction between phases, whish are determined by mechanical 
macrostresses at particle surfaces, depend in a conducting medium on the magnetic field. 
According to the investigations of the problem of flow past bodies in [9 - 111 the effect 
of a magnetic field on the hydrodynamic resistance is comparable to the action of the 
Lorentz force, and in some cases may even exceed it. 

The averaging over phases is carried cut in accordance with the rule 

(g)c = D,-l 5 g(X + x’)dD, (0 = s,f) 
*OS 

where D, and D, are, respectively, the volumes occupied by particles and the fluid,and 

BS +D, = Di. Below we make use of the relationship 

(g> = c WC? + (1 - 4Wf 

and of the formula for the mean product of two quantities 

(grgs> = <&X&> + <&r&?s> = %+52> + c GQ&>S + (1.11) 

(1 - 4 <&@&>f, 6gi = gE - <gi> 

Formulas (1.10) and (1.11) are also applicable to averages over elementary cells Dk. 
The latter represent regions occupied by the k-th particle and the surrounding fluid, as 
usually considered in suspension rheology [X2]. The portions of volume occupied by the 
particle and the fluid are, respectively, c and 1 - c . The relation between mean va- 
lues of cell parameters denoted below by quantities in brackets and the averages over 
volume Dl is of the form 

2, Eleetrio current dirttfbution in cell8 rnd rvbrrging of Ohm’8 
law. We assume that the definition of the microflow in a cell satisfies the inequalities 

o” = max (uc, aj) < (POORLY (2.1) 

Re$ = 8p,PI< 1, p = max (Ys, V,) 

The first of these inequalities makes it possible to neglect the derivative with respect to 
time in the first of Eqs. (1.2) and assume rot E =: 0 within volume Di , and the second 
of conditions (2,l) makes possible the assumption that B x (13;) along a segment of 
length k. 

Let us consider the current distribution when a spherical particle moves at velocity V, 
in a stream whose velocity at infinity is V, and the current density j,. For fairly small 
particles the Stewart number 

St = crt <B>2a 1 (&WA S 1 (2.2) 

can be considered small. 
(At very low velocity of flow W, inequality (2.2) may be violated. In such case it 

is necessary to assume smallness of the square of the H~t~i~n number Na2 =St . Re< 
1, where Re = J+‘=a / vf is the usual Reynolds number). Owing to this it is possible, 



Continual equations of electrodynamics 39 

when determining the electric current in the first approximation by St , to consider the 
field of the fluid relative velocity W to be the same as that obtaining in the absence of 

magnetohydrodynamic interaction, The current density is determined by the Ohm’s law 

j, = o$E’, jt=q(E’+Wx(B)), E’=E+V,x(B)=-VO,’ (2.3) 

where E’ is the electric field in a system moving with the particle and is determined by 

the solution of the boundary value problem for the potential CD’ 

A@_’ = 0 (r < a), A@+’ = (B) rot w p > U) (2.4) 
a_ = D+” a@_‘/ti=u,(a@+‘/ti-n(Wx(B))) @=a) 
VCD,,’ -+--Em (r--,~)* IQ’-‘(O)/<w a*=of/(&, n=r/r 

where r is the radius vector drawn from the particle center, and a_ and @+’ are the 
potentials inside and outside the sphere, respectively. It is assumed that the distribution 

W (r) in the absence of a magnetic field is axisymmetric 

W = IG (r, @)e, + Ws (r, fl)e, (2.5) 

where the angle 8 is read from the direction of W,. We assume the field W to be in- 

compressible, which is admissible for M2 = W,’ I Cf2 < 1, where C, is the speed of 
sound in the fluid div W = 0 (2. ‘3) 

The current distribution inside the particle is independent of the selected velocity field 

when the latter satisfies conditions (2.5) and (2.6); furthermore 

nW = 0 (r = ~1, W = W, + 0 (9) (1. -* 00) (2.7) 

To prove this statement it is sufficient to ascertain that the difference between the 
two solutions of (2.4) which correspond to velocity fields WI and ws is constant inside 
the sphere. Denoting that difference by x, we obtain the following problem 

Ax_ = 0 (r < a), Ax+ = (B) rot u (r > a) 

X- = xtt ax- lar = u* rax+iar - n (U x (B))] (r = U) 

vx+ = 0 (r-l), II = w2 - WI 
r-es 

(2.8) 

It follows from (2.5) and (2.6) that u can be represented as 

u . = rot Y, Y = Y (r, 0)e, (2.9) 

In conformity with the impermeability requirement Y vanishes when r = Q. let us con- 
sider the auxiliary external problem 

Ax+* = CB) rot u (r > a) 

6x+* / ar = n (u x <B)) (r = a), VX+* - 0 (r-l) 
r--r00 

Using the relationships 
<B> rot u = - A (03) ‘4’) 

n (u x <B>)= - & (<B> u’) + n (<B> V) ‘I’ 

(2.10) 

we conclude that problem (2.10) is equivalent to the following: 

AA = 0 (r > a), aA/ar=n(<B)V)Y (r-a) (2.11) 
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VA,, = 0 (r-l)* A = x+* + <B) Y 

Since the identity 
n((B) v)y=((8) V)(nY)-Y((B) ‘7) n 

is valid and,owing to axial symmetry, nYT s 0 throughout the flow and at the sphere 
surface ‘P = 0, Neumann’s condition in problem (2.11) vanishes, hence that problemhas 
the solution A E C = const. It is now evident that the pair of functions 

x_=C, X+=X+*=--(B)Y+C (2.12) 

Sati&% all conditions (2.8). Since the solution of problem (2.8) is unique within the ad- 
ditive constant,(2.12) represents the sought solution, 

Formula (2.7) makes it possible to calculate the current density in a particle (but not 
in the fluid) using the simplest field W which corresponds to the inviscid potential flow 

W = WI = V ((1 + ‘faasY3) W,r} 

The solution for each field was obtained in [lo] for the particular case of j, = 0 . 
l[t is possible to extend it to the case of j, # 0 and, also, to take into account the vor- 

tex component of field W using formula (2.12). The ~or~~onding formulas for the cur- 

rent and the electric field in the laboratory system of coordinates are of the form 

. 30-f 
Js = - 

1-t 2% ( 
J.L+vmx<B) -+Kc@)) (2.13) 

jf=q E,+V,x<B)+~V($W~r)x<B)+ ( 
V {$-6s - Em) r) + (00 VI qf) 

E, = (1 + 204-l (3a,E,--(1 -c*) V,x (B) + (1 +i/eo*) WAB)) 

E,=E,+V 
( 
$(&-EE,)r+O v) 

In a weakly concentrated suspension the dis~ibution (2.13) may be identi~ed with the 
microvariable distribution inside elementary cells, whose averages over a cell are calcu- 

lated by formula 
Igl = 0;: 1 gd& (2.14) 

*u 
where f)n denotes a sphere of radius R = LT*~~ with a center ~ornrno~ with the par- 

ticle. We shall use the following relationships: 

fEJ = - D;;’ 1 VcDcm~ = - f)g 5 ahdSR (2.15) 
DR SR 

[j] = 0;’ 1 divTdD~ = 02 s (nj)kdSR 

DR RR 

where (0 is the electrical potential and T is the tensor with components pik = rffka 

The GAUSS formula in (2.15) is used with allowance for the continuity of @ and nj on 

the inner sphere S,. It follows from (2.13) and (2.14) that on sphere Sn 

Q=:G$=- ((I--c)E,+cE,}r--(B)v (2.16) 
nj=njf==n((l- c) j, + cj, + of ((B) VI y) 
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The su&ti~ution of (2.16) into (2.15) yields 

[El = (1 - c) E, + cE, + [EY], rjl = (1 - 0) j, + cj, + Ijal (2.17) 
i&i = - ‘1% trot W x (B) = @Woo x 0’9, 

. 
burl = - of f&d 

The representations of mean characteristics in the form of streams (2.15) reflect the 

combined effects of perturbations induced by particles. Parameter b generally depends 

on the Reynolds number. For an inviscid potential flow fi = 0, while for the Stokes 

mode we have 
Y=- + W,* (1 - -$) sin 8, (2.18) 

Taking into account the homogeneity of quantities E, and j, inside a particle from 

(2.17) and the second of formulas (1.12), we obtain 

[El, = Es, [j], = j,, 
[%I 

[Elf = E, + 5-_c y Ijlf = jw -I- jl_c w (2.19) 

Using formulas (2.12), (2.13) and (2.19) and relatio~hi~ 

IVJs = V,, [VJ, = V, - 2s (I - c)-‘(V, - V,) 

we establish the macroscopic Ohm’s law 

Cj> = CG (0% + U, x <B)) (2.20) 

The 

W, is nonzero,the equality U, = {V) is satisfied if the conductivities of 

phases are the same. Note that parameter fi, which depends on the detailed pattern of 
flow around particles, does not implicitly appear in the averaged Ohm’s law. Formulas 

for the mean phase current densities are of the form 

Cjh = (I + 20,ff1 + 2xc) t(j) - (f-4 CL2 (2.21) 

(j>f = (1 + 2~)’ { Cj> + & < j,)} v <j,> = Wf& x (W 

This shows that when the mean current <j> is passed through a two-speed suspension, 

the mean currents in phases cannot be determined by the canductivi~ of these and by 

the quantity C, if the “slip current” <j,> is not specified. 
The derivation of Ohm’s law described above is based on current distribution in cells 

with translational movement of particles. Besides distributions (2.13) components of 
microfields E, and current j, are possible. These are due to the rotation of particles 
at angular velocity co, and su~ound~g fluid having an undisturbed angular velocity @Q 
for r+m , The electrical potential 1~, induced by the slow relative rotation of the sphere 
is determined by the solution of problem 

AD,; = 2 (B) o), (r < a), AQ$+ = <B) rot V, (r > a) (i. 22) 

0_- = Do+* amU- Jar + a {(n 0%)) (no,) - <B) ad) = 
a, {a@_+ I& - n (V, X <B>)} (r = a) 
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WlV_)% =-+(<B)af)r+o(i), Vw=~fXr+$(m8-aaf)Xr 

where V,is the inertia-free approximation of the velocity field of a viscous fluid in the 
presence of rotation of the sphere and fluid stream. The condition for r * 00 is formu- 
lated with allowance for div ja = 0. The solution of problem (2.22) is of the form 

h, = (2 + 3u*)-‘, hf = (2 + 30,~‘)-I 

where the unimportant additive constant in the formula for @, is omitted. With the use 
of fOrmi.&% (2,15) and (2.23) it is possible to ascertain that [E,] = - [VCD,] = 0 and 
&,,I = 0. This result remains valid in the case of quasi-solid rotation of a perfect fluid 
when V, s @f X r. The induced electric field with a sphere rotating in an irrotation 
stream of perfect fluid was investigated in [lO]. When the inequalities 

Re = Ura3a /vf < 1, Re,=]of--o,I~~/Y~&l 

are satisfied, the perturbation of the velocity field in the fluid is a superposition of fields 
that correspond to the ~~la~onal and rotational motions of a particle. Because of this, 
E, and j, appear in local distributions as a sum, thus leaving the mean values jEJ and 
1jJ , and the form of Ohm’s macroscopic law unchanged. 

3, Macrorcopic denritler of power rnd di~$ipation~ Thesolution 
derived in Sect. 2 may be used for the determination of densities of electric power - [ jE] 
and dissipation [j2 / al averaged over cells, and for the subsequent calculation of the 
macrodensity of these quantities, In conformity with (1. II) we have 

{jE] = IjllEl + Bj6El (3.1) 

The correlation term may be represented in the flux form 

In the case of &tributJon (2.13) which relates to the transtational motion of the par- 
ticle the surface integral in (3.2) can be reduced with allowance for (2.13) and (2.16) 
to the form 

@jsE] = - at (&I?)’ 1 {W ‘v 0.3 4 - (3.31 
sR 

The nonp&tivity of the correlation term means that the elementary cell generates 
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electrical power in addition to - [j][E] . Such generation is admittedly absent if the 

flow past the particle is potential or is parallel to the magnetic field. If the representa- 

tion I = f (r) sin tf is valid, which is the case with Stokes flow modes (see formula 

(2.18)). and also [6j6E] = 0. 
If in the case of low Reynolds numbers the rotational effects are taken into account, 

it is necessary to add to the correlation term (3.3) the term [j,E,j. Cross terms of the 

form [j,EJ and [j,E,], where jt and Et are distributions, determined by (2.13) which 

relate to translational motion, prove to be zero. For the quantity [j,E,l obtained from 

the solution (2.13) we have 

[j,Q,J = VaoafR2 (mf - OJ {3,(B)* or + ((B) tof) (B))c (1+ 0 (c’“)) (3.4) 

where R = acab is the radius of the cell. If I cu/ - o, 1 s of, the ratio of the right- 

hand side of (3.4) to [j] [El is of order cR’of*/(lo’ Vms). When the inequalitv Rs/LB < 
10, where L is the characteristic length of mean velocity variation, the above ratiocan 
be neglected within the scope of the theory that is linear with respect to particle con- 

centration. 

Thus for low Reynolds numbers it is possible to assume 

GE1 = [jl [El (3.5) 

Summing formulas (3.5) over the ceils and considering V, and E, as constant in Dr , 
with the use of (1.12) and (2.17) we obtain 

(jE) = (j)/(E) - { (‘:y$f)’ - p} X 

{ 
3c/2 
if 2% 

- p} ~~n-1 q ((<I’>, - v,) x (JQY 
(3.6) 

where V, is the velocity of the k-th particle center of mass. The correlation correction 

to (j>(E) defines the electric power generation in the macrovolume owing to the par- 
ticle distribution by velocities. At low Reynolds numbers that correction is proportional 

to c*/*, but when the distribution dispersion E is fairly small (E < (v>,%’ 8) the ratio 
of the correlation term to <j> (E) is considerably smaller than c. Then in the linear 

approximation by c we have 
GE) = Cj> <E) (3.7) 

Formula (3.7) is even more valid for the model of irrotational flow past particles, since 
for /3 = 0 the correlation term is of order P. 

The Joule dissipation density averaged over cells substantially depends on functiony. 
For the Stokes mode of flow from (2.13) and (2.17) we obtain 

1% 
[ 3 -= 

u 
1 tya &q (7 (W, x (B>)2 + (Woo (W2} c’I* + 0 (c) (3.8) 

e 

In conformity with (2.23) the allowance for rotational motion results in a dissipative 
term of the form 

Ijt/ol = ‘/oojR’ {(B%+‘lg (<B)e~t)‘} (1 + 0 (c)) 

whose ratio to the first term of (3.8) is small in comparison with c when RaILa 4 Cm 

In that case the effects of rotation and dissipation can be neglected. 

For the potential flow past a particle we have 

1= 1 1 [j12 -=- 
u + 

c (1 - c) 
u Of (1 + 2u, + 2 (1 - a*) c) (3(3+a,+ (1 -o*)c) [j*12- (3.9) 

e 
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2 (1 - (J*) &.I [jlh f&l = 1/2+L x (W 
We summate formulas (3.9) over the cells taking into account formulas (1.12) and(2.17) 
and neglecting the dissipation term of order c2 similar to that in (3.6) and related to 
particle distribution by velocities. Then the macrodensity (j2 / (T) in the case of irro- 
tation flow in linear approximation by c is defined by 

_L 0 (jP 
0 

=-+ ar ti ; za,l (3 (3 + %) (j&2 - 2 W--a,) Cj,> Cj>} (3.10) e 

Formula (3.10) implies that the averaged dissipation does not van&i when the current 

mean density is zero. This is explained by the thermal effects of microcurrents whose 
generation is unavoidable when the flow past particles is oblique to the magnetic field. 

4, Continual equation8 at high and low magnetic Raynoldr 
number*. The elimination of quantities <E> and G> from (2.20) and the first two 
of Eqs. (1.7) makes it possible to obtain for the induction an equation which defines the 
magnetic field in a two-phase medium 

a (B> 
- = rot (IT, x (B)) + at +yl n % x rot Ob + A I(B)) (4.1 

In the case of high magnetic Reynolds numbers Re g,“’ = pOcr,U,L> 1 the first termin 
the right-hand side of (4.1) is the principal one. If the diffusion terms are neglected, it 
is possible to obtain the analog of the condition of the magnetic field freezing-in in the 

case of a two-phase medium [6, 71. However,unlike in the case of the homogeneous me- 
dium, the magnetic field does not move with the material volume but is attached to a 
fictituous continuum which moves at velocity (v) + 31rcW,. 

The effect of the gradient of macroparticle c6ncentration on the propagation of mag- 

netic perturbations is another peculiarity of suspensions with phases of constant conduc- 

tivity. We transform the gradient in (4.1) restricting in the second of formulas (2.20) 
the approximation for a, to a linear one with respect to c 

Q In a, z 3xVc (4.2) 

Substituting (4.2) into (4.1) and assuming that the coefficients of the obtained equation 

are constant, for plane waves of the form 

(B) = b exp (i (KX - at)), Im K = 0, Kb = 0, o = W, + hi 

we obtain the following dispersion formulas: 

0,. = (U, + 3/4,-la,-WC) K, oi = - y,,-la,-‘K2’ (4.3) 

This shows that in the presence of a concentration gradient the rate of perturbation trans- 
fer is further increased in the direction of XVI: due to the incease of effective conduc- 

tivity. 
Electric current distribution in channels at low Reynolds numbers are subject of detailed 

investigations in connection with various applications in magnetohydrodynamics (see, e. go 
~131). Similar steady state problems with Re,fL) < 1 may be considered in the case 
of two-phase media, when <B> = B, + Bi, where Bo and Bi are, respectivelY. the 
external and the induced magnetic fields which can be neglected in Ohm’s law (2.20). 
The distribution <E) and <j> are then determined by the solution of system 

rot(E) = 0, div (j) = 0, (j) = 0,((E) + U, x B,) (4.4) 



Continual equations of electrodynamics 45 

We resort to macrocontinual equations with the intention of using these for calculat- 
ing the over-all electrical characteristics of two-phase systems. This is justified if it 
yields adequate results of integration of the true and averaged distributions over macro- 

scopic manifolds. With the use of definition (1.4) it is possible to show that the integrals 
of micro- and macrodistributions taken over the finite volume I) - Ls coincide to 

within the term of order I / L. Since, strictly speaking, the averaging in (1.4) presup - 

poses passing to limit I / L + 0 with fixed ratio a / 1 [12], the over-all electric po- 

wer N and dissipation Q can be calculated by formulas 

N (jE)dD, Q= 

On the basis of formula (3. ‘7) we conclude that N can be determined by solving system 

(4.4). However the solutions of the latter are insufficient for determining Q, since mac- 

rodensity of dissipation is not determined by specifying vectors <j> and u, x B,,. 
Total current through the macrosurface and the difference ofpotentials between two 

points at a distance of order L, can be determined in the steady state case with the use 

of integrals of averaged functions. This follows from the integral laws of conservation 

for microscopic quantities 

8 
jv dZ = 0, 

$ 
E~dlT=0 

(4.5) 
c r 

where v and 2 are unit vectors of the normal to surface 2 and tangent to curve r , 
respectively, Using (1.4) and (4.5) we obtain formulas 

1 (j)vdF={l+O(--$)}\ jvdF 

S(E)rdC=jl+o(~)jSE~dC 
c C 

(406) 

where F is an open surface - La and C is a curve (segment) whose end points are 

at a distance -L from each other. 

If the microdifferential of length 612 is of the order I,, then in order to pass to mac- 

rodefinition it is necessary that 1 < 1, < L. Assuming that within a scale of order I, 
the averaged functions are constant and applying (4.6) to the macroscopically smallarea 
6F and arc 6c, we obtain 

<j> vGF= k+ 0 (&)} $ jv dF, (E) T$C = {l + 0 t*)} \ Et dC 
6 6C 

where v* and T* are macroscopic vectors of the normal and tangent introducedin[12]. 
Neglecting, terms of order 1 / I, it is possible to conclude that the normal component 
of vector G> at the impermeable wall and the tangent component of (E> at the per- 
fect electrode are absent. This makes it possible to apply the conventional boundary 
value problem formulation to system (4.4). The use of Ohm’s formula in the form(4.4) 

close to a wall is admissible, if in that region the condition of smallness of particle vo- 
lume concentration is not violated. 
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